Preparation and Crystal Structures of Plutonium(III) Pentachloro Complexes, $\mathbf{K}_{\mathbf{2}} \mathbf{P u C l}_{5}$ and $\mathbf{R b}_{\mathbf{2}} \mathbf{P u C l}_{5}{ }^{*}$

LESTER R. MORSS and TAKEO FUJINO \dagger
Chemistry Division, Argonne National Laboratory, 9700 South Cass
Avenue, Argonne, Illinois 60439

Received December 8, 1986; in revised form June 3, 1987

Abstract

$\mathrm{K}_{2} \mathrm{PuCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ were prepared by heating mixtures of anhydrous PuCl_{3} and respective alkali metal chlorides in vacuum-sealed quartz ampoules at $400-500^{\circ} \mathrm{C}$. Their crystal structures are both orthorhombic with $\mathrm{K}_{2} \mathrm{PrCl}_{5}$-type structure (space group Pnma, $Z=4$), determined by powder X-ray crystallography. $\mathrm{K}_{2} \mathrm{PuCl}_{5}$: lattice parameters $a=12.674 \pm 0.003, b=8.727 \pm 0.002, c=7.969 \pm 0.002$ \AA; cell volume $220.4 \pm 0.2 \AA^{3}$; X-ray density $3.726 \pm 0.004 \mathrm{~g} / \mathrm{cm}^{3} . \mathrm{Rb}_{2} \mathrm{PuCl}_{5}$: lattice parameters $a=$ $13.093 \pm 0.008, b=8.909 \pm 0.005, c=8.178 \pm 0.005 \AA$; cell volume $238.5 \pm 0.4 \AA^{3}$; X-ray density $4.088 \pm 0.008 \mathrm{~g} / \mathrm{cm}^{3}$. Fourteen variable atom parameters of these complexes were obtained by electrostatic calculation with a program which maximizes the Madelung constant under the condition that the ion-ion separations in the crystal are all larger than respective critical distances. The measured Raman lines of $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ are very close to those of hexachloride complexes. The bond lengths and stability of $M_{2} \mathrm{PuCl}_{5}(M=\mathrm{K}, \mathrm{Rb})$ are discussed. © 1988 Academic Press, Inc.

Introduction

As stated in a review by Meyer (1) on complex rare-earth halides, remarkable progress has been made in the last decade for the characterization of $A_{2} R E C l_{5}$ compounds through synthesis and crystal structure studies, where A and $R E$ stand for alkali metals and rare-earth elements, respectively. The complex chlorides crystallize either in an orthorhombic, $\operatorname{Pbnm}(Z=$ 4) $\mathrm{Cs}_{2} \mathrm{DyCl}_{5}$ structure (2) or in an orthorhombic, $\operatorname{Pnma}(Z=4) \mathrm{K}_{2} \mathrm{PrCl}_{5}$ (3) struc-

[^0]ture. The Pbnm structure appears with the alkali metal Rb or Cs in combination with the rare-earth elements of crystal radius small enough to adopt coordination number $(\mathrm{CN})=6$ in ternary rare-earth trichlorides (1), while the Pnma structure is found with the alkali metal K or Rb and lighter rareearth elements. In the former type of crystal structure, a trivalent rare-earth ion is coordinated by six chlorine atoms forming a slightly distorted octahedron. The two octahedra share a common edge, and the successive sharing results in formation of an infinite chain along the [001] direction, viz. ${ }_{\infty}^{1}\left[\mathrm{RECl}_{4 / 1}^{\prime} \mathrm{Cl}_{2 / 2}\right]^{2-}$. On the other hand, the coordination number of chlorine atoms around a rare-earth ion is seven in the Pnma structure. These chlorine atoms form a monocapped trigonal prism. The two polyhedra share two common edges form-

TABLE I
Crystal Data for $K_{2} \mathrm{PuCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$

	$\mathrm{K}_{2} \mathrm{PuCl}_{5}$	$\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$
Crystal system:	Orthorhombic	
Space group	Pnma ($Z=4$)	
$a(\AA)$	12.674 ± 0.003	13.093 ± 0.008
b (\AA)	8.727 ± 0.002	8.909 ± 0.005
$c(\AA)$	7.969 ± 0.002	8.178 ± 0.005
Cell volume (\AA^{3}) (per formula)	220.4 ± 0.2	238.5 ± 0.4
X-ray density ($\mathrm{g} / \mathrm{cm}^{3}$)	3.726 ± 0.004	4.088 ± 0.008

ing an infinite chain along the [010] direction, viz. ${ }_{\infty}^{1}\left[\mathrm{RECl}_{3 / 1} \mathrm{Cl}_{4 / 2}^{e}\right]^{2-}$. For $\mathrm{K}_{2} \mathrm{PrCl}_{5}$, the $\mathrm{Pr}-\mathrm{Cl}(4)$ bridging distance is slightly longer than the terminal distance (superscript t). The above information has been gained by single crystal X-ray diffraction analysis (3).

The actinide complexes $\mathrm{A}_{2} \mathrm{AnCl}_{5}(\mathrm{An}=$ actinide elements) have not been systematically studied so far. The crystal structure of $\mathrm{K}_{2} \mathrm{UCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{UCl}_{5}$ had been reported to be orthorhombic and isostructural with $\mathrm{Tl}_{2} \mathrm{AlF}_{5}$ (4). Recently, however, Meyer et al. (5) showed that this is not the case: These are orthorhombic, but of $\mathrm{K}_{2} \mathrm{PrCl}_{5}$ type with space group Pnma. Very recently, the americium complexes $\mathrm{K}_{2} \mathrm{AmCl}_{5}$, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{AmCl}_{5}$, and $\mathrm{Rb}_{2} \mathrm{AmCl}_{5}$ have been prepared and their crystal structure analyzed (6). The crystal structure was found to be the same as that of $\mathrm{K}_{2} \mathrm{UCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{UCl}_{5}$, the lattice parameters being significantly different.

Here, we report the preparation and crystal structure of $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$. This paper refines and extends our preliminary result (7). Crystal system and lattice parameters were determined by X-ray powder diffraction analysis, while 14 variable atom parameters were obtained by use of an electrostatic method (8,9) which was shown to give approximately correct values of the parameters for ionic crystals without intensity calculation of the diffraction
peaks. Calculation of the atom parameters was carried out by coconverging all parameters on a computer program. The arrangement and separation of atoms in the crystals are examined as a function of crystal radius of alkali metals. With the aid of Raman spectra the coordination of chlorine atoms around plutonium is discussed. The change of molecular volume is compared for $\mathrm{K}_{2} \mathrm{AnCl}_{5}, \mathrm{Rb}_{2} A n \mathrm{Cl}_{5}$, and $\mathrm{AnCl}{ }_{3}$ with An ranging from U to Am .

Experimental

All procedures followed those of Ref. (9) with the exception that trivalent complexes were not reacted with $\mathrm{Cl}_{2} . \mathrm{K}_{2} \mathrm{PuCl}_{5}$ obtained was pale blue, while $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ was yellow ochre.

Results and Discussion

Debye-Scherrer patterns of both $\mathrm{K}_{2} \mathrm{Pu}$ Cl_{5} and $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ were essentially the same as that of $\mathrm{K}_{2} \mathrm{PrCl}_{5}$ (3) which is orthorhombic with space group Pnma. Unit cell dimensions were computed as in Ref. (9). All observed lines could be assigned to space group Pnma. Table I shows the crystal data. Due to the larger crystal radius of Rb^{+}than K^{+}, the lattice parameters are larger in $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$. The observed and calculated $Q\left(=1 / d^{2}\right)$ values for $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ are tabulated in columns 2 and 3 of Tables II and III, respectively. Q (calc) values were computed with the LAZYPULVERIX program.

In the crystals $A_{2} \mathrm{PuCl}_{5}(A=\mathrm{K}, \mathrm{Rb})$ having the $\mathrm{K}_{2} \mathrm{PrCl}_{5}$ structure, there are 14 variable atom parameters to be determined. These are:

$8 A$ in $(8 \mathrm{~d})$	$x[A], y[A], z[A] ;$
4 Pu in $(4 \mathrm{c})$	$x[\mathrm{Pu}], z[\mathrm{Pu}] ;$
$4 \mathrm{Cl}(1)$ in $(4 \mathrm{c})$	$x[\mathrm{Cl}(1)], z[\mathrm{Cl}(1)] ;$
$4 \mathrm{Cl}(2)$ in $(4 \mathrm{c})$	$x[\mathrm{Cl}(2)], z[\mathrm{Cl}(2)] ;$
$4 \mathrm{Cl}(3)$ in $(4 \mathrm{c})$	$x[\mathrm{Cl}(3)], z[\mathrm{Cl}(3)] ;$
$4 \mathrm{Cl}(4)$ in $(8 \mathrm{~d})$	$x[\mathrm{Cl}(4)], y[\mathrm{Cl}(4)], z[\mathrm{Cl}(4)]$.

TABLE II
Observed and Calculated Q Values and Intensities for $K_{2} \mathrm{PuCl}_{5}$

($h \mathrm{kl}$)	$Q(\mathrm{obs})^{\text {a }}$	Q (calc)	$I(\mathrm{obs})^{\text {b }}$	I(calc)	(hkl)	$Q(\mathrm{obs})^{a}$	Q (calc)	I(obs) ${ }^{\text {b }}$	I(calc)
101	0.0215	0.0220	20	20	612	0.3025	0.3002	<1	0.3
200	0.0243	0.0249	8	8.4	440	0.3083	0.3097	2 b	1.1
011	0.0284	0.0289	7	3.0	314	0.3195	0.3211	3	1.5
020	0.0518	0.0525	5	3.2	433	0.3576	0.3595	3	1.6
211	0.0531	0.0538	5	2.6	$[442$]	0.3708	$[0.3727]$	3	$[1.1$ [
002	0.0621	0.0630	3	3.1	[721]	0.3708	[0.3733]	3	[0.7]
301	0.0708	0.0718	8	6.5	[134]	0.3767	[0.3763]	3 vb	[0.7]
121	0.0737	0.0745	9	8.3	613]	0.3767	[0.3790]	3 vb	[1.0]
220	0.0765	0.0774	8	5.9	$\left[\begin{array}{l}712 \\ 541\end{array}\right]$	0.3794	$[0.3812]$	2 vb	[0.5]
112	0.0814	0.0823	8	2.1	[541]	0.3794	[0.3815]	2 V	[0.4]
202	0.0868	0.0879	2	1.8	[015]	0.4052	[0.4068	1	[1.0]
400	0.0988	0.0996	2	2.5	[343]	0.4052	[0.4078]	1	[1.0]
212	0.1007	0.1010	4	0.5	514	0.4195	0.4207	1	0.7
[401	0.1143	$\left[\begin{array}{l}0.1154 \\ 0.155\end{array}\right]$	6	$[2.17$	334	0.4247	0.4261	2 b	1.2
[022]	0.1143	[0.1155]	6	[0.7]	[215]	0.4313	[0.4317	2 yb	[1.4]
302	0.1180	0.1190	1	0.6	[640]		[0.4342]	2 b	[1.1]
122	0.1206	0.1217	5	1.5	[820]	0.4498	[0.4510	2 b	[1.0]
411	0.1274	0.1285	6	1.2	[443]	0.448	[0.4514]	2 b	0.3
312	0.1311	0.1321	6	1.8	[524]	0.4591	[0.4601]	2	[0.2]
031	0.1329	0.1339	3	1.3	[802]		[0.4614]	2	[0.3]
222	0.1393	0.1404	8	8.8	053		0.4700		[0.3]
420	0.1510	0.1521	7	3.1	225	0.4685	0.4711	2 vb	0.5
013	0.1537	0.1549	5	1.8	060		0.4727]		0.3
231	0.1576	0.1588	4	1.2	633	0.4823	0.4840	2 vb	0.8
402	0.1616	0.1626	2	1.7	[161	[0.4933	$[0.4947]$		$[0.9]$
501	0.1705	0.1714	<1	0.4	253		0.4949	3 vb	1.5
213	0.1784	0.1798	8	5.4	642		0.4972	3 vb	0.8
132	0.1860	0.1874	5	1.7	260	0.4957	0.4976		0.6
303	0.1965	0.1978	<1	1.3	822	0.5121	0.5139	1	1.1
123	0.1991	0.2005	1	1.6	813	0.5509	0.5533	1	1.1
040	0.2086	0.2101	6	3.2	262	0.5586	0.5606	1	1.1
422	0.2137	0.2151	3	1.9	[651]	[0.5676	$\lceil 0.5681$		$[0.37$
430	0.2183	0.2178	<1	0.6	453		0.5696	2vb	1.0
521	0.2227	0.2239	7	5.1	714		0.5701	2 vb	0.5
512	0.2303	0.2318		0.8	[460]	[0.5701	[0.5722]		0.5
141	0.2303	0.2321	4	2.0	$\left[\begin{array}{l}116 \\ 154\end{array}\right]$	0.5849	$[0.5862]$		[0.7]
240	0.2334	0.2350	2	0.9	[154]	0.5849	[0.5864]	1	[1.0]
$\left[\begin{array}{l}332 \\ 610\end{array}\right]$	0.2358	$\left[\begin{array}{l}0.2372 \\ 0.2372\end{array}\right]$	3	$\left[\begin{array}{l}1.3 \\ 0.3\end{array}\right]$	$\left[\begin{array}{l}206 \\ 823\end{array}\right]$	0.5900	$\left[\begin{array}{l}0.5918 \\ 0.5927\end{array}\right]$	1	$\left[\begin{array}{l}0.2 \\ 0.2\end{array}\right]$
403	0.2400	0.2413	3	0.4	$[462]$		$[0.6353]$		$[0.57$
413	0.2531	0.2545	6	2.6	10,1,0	0.6356	0.6357		0.2
033	0.2581	0.2599	4	1.2	316	0.6356	0.6360	2	0.2
114	0.2698	0.2713	6	1.7	$\left[\begin{array}{l}354\end{array}\right]$		[0.6362]		0.6]
620	0.2753	0.2766	3	2.0	[561]	0.6432	$[0.6441]$		[1.1]
341	0.2804	0.2819	2	2.0	226	0.6432	[0.6443]	4	0.7]
233	0.2832	0.2848	6	2.6	[743]	6579	[0.6569]		[0.5]
602	0.2858	0.2871	2	0.9	[833]	0.6579	[0.6583]	1	[0.7]
242	0.2965	0.2980	1	0.9					

[^1]${ }^{b}$ Visually estimated.

TABLE III
Observed and Calculated Q Values and Intensities for $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$

($h \mathrm{kl}$)	$Q(\mathrm{obs})^{\text {a }}$	Q (calc)	((obs) ${ }^{\text {b }}$	I(calc)	($h k l$)	$Q(\mathrm{obs})^{\text {a }}$	Q (calc)	(obs$)^{\text {b }}$	I(calc)
101	0.0203	0.0208	9	10	033	0.2477	0.2480	1 b	1.1
200	0.0228	0.0233	5	3.2	114	0.2560	0.2577	2	1.3
011	0.0278	0.0276	7	2.5	042	0.2591	0.2614	2 b	1.2
211	0.0502	0.0509	1	2.2	[341		0.2690		2.7
002	0.0591	0.0598	3	4.1	602	0.2685	0.2698	4 vb	1.0
102	0.0646	0.0656	1	0.1	233		0.2713]		2.1]
301	0.0668	0.0675	9	9.4	440	0.2938	0.2949	4b	0.8
121	0.0703	0.0712	9	8.1	314	-	0.3043	-	1.2
220	0.0730	0.0737	10	7.1	433	0.3395	0.3413	2 b	1.4
112	0.0772	0.0782	3	1.9	721	0.3503	0.3512	2 vb	0.4
400	0.0925	0.0933	1	1.7	613	0.3562	0.3572	2	0.8
401	0.1073	0.1083	2	1.6	343	-	0.3887	-	1.1
122	0.1149	0.1160	4	1.4	[623]	3949	$\left[\begin{array}{c}0.3950 \\ 0.3977\end{array}\right]$	Ib	[0.4]
411	0.1200	0.1209	3	1.1	[514]	3949	[0.3977]	Ib	[0.6]
312	0.1242	0.1249	3b	1.6	334	0.4030	0.4051	1	1.0
031	0.1273	0.1283	3	1.1	640	0.4097	0.4116	1b	1.2
222	0.1325	0.1335	8	7.9	820	-	0.4237	-	1.3
420	0.1426	0.1437	7	2.0	$\left[\begin{array}{l}642 \\ 253\end{array}\right]$		$\left[\begin{array}{l}0.4714 \\ 0.4729\end{array}\right]$		0.97
013	0.1460	0.1472	5	1.4	253	0.4712	0.4729	1 vb	1.1
213	0.1692	0.1705	7	4.2	[161]		[0.4744]		0.9]
132	0.1776	0.1790	5	1.5	822	-	0.4835	-	1.4
303	-	0.1871	-	1.5	[505		$[0.5196$		0.2
123	-	0.1908	-	1.1	813	0.5180	0.5205	1 vb	0.9
040	0.1998	0.2016	6	3.1	552]		0.5206		0.5]
422	0.2019	0.2035	4	1.2	453	0.5432	0.5429	1	0.8
600	-	0.2100	-	1.4	[116		$\left[\begin{array}{l}0.5567 \\ 0.5583\end{array}\right]$		0.4
521	0.2100	0.2112	6	5.7	823	0.5584	0.5583	1	0.2
512	0.2174	0.2182	1	0.8	[154]		[0.5600]		[0.7]
$\left[\begin{array}{l}431 \\ 141\end{array}\right]$	0.2199	$\left[\begin{array}{l}0.2217 \\ 0.2224\end{array}\right]$	4	$\left[\begin{array}{l}0.4 \\ 1.0\end{array}\right]$	$\left[\begin{array}{l}226 \\ 561\end{array}\right]$	0.6115	$\left[\begin{array}{l}0.6120 \\ 0.6144\end{array}\right]$	1 lv	$\left[\begin{array}{l}0.5 \\ 1.3\end{array}\right]$
332	-	0.2257	-	1.2	[653	0.6597	[0.6596]	1	[0.4]
413	0.2393	0.2405	2h	2.2	[752]		[0.6606]		[0.3]

${ }^{a} Q=1 / d^{2}$ in \AA^{-2}.
${ }^{b}$ Visually estimated.

Since it seemed difficult to obtain diffraction data with precise enough intensities to be able to determine the above variable parameters from the Guinier films, and since the present compounds are essentially ionic, these parameters were determined by an electrostatic method (8,9). The basis of the method is that the atom parameters are to be those which bring about the maximum Madelung constant (condition 1) under the restriction that the ion-ion separations of
any pairs of ions in the crystals are larger than the respective critical distances (condition 2). In doing the calculation, when the number of these parameters is more than two, the parameters should be separated into groups; otherwise it is practically impossible to follow the change of the Madelung constant as a function of these parameters. The parameters in a group are those which can explicitly be calculated together. For example, the parameters which
define the atom position of one atom are to be grouped. In a preceding paper (8), the six variable atom parameters of $\beta-\mathrm{Rb}_{2} \mathrm{GeF}_{6}$, were obtained for $u(\mathrm{Rb} 1), u(\mathrm{Rb} 2)$, and two explicit pairs of atom parameters, i.e., $u(\mathrm{~F} 1)-v(\mathrm{~F} 1)$ and $u(\mathrm{~F} 2)-v(\mathrm{~F} 2)$ by converging from initially guessed parameters. The maximization of the Madelung constant was performed successively for each above parameter or parameter pair using newly determined values, and then this cycle was repeated (8). Through this process, electrostatic interactions between atoms of the different groups are reflected in the atom parameters. In order to do the calculation with smaller correction values, the parameters related to the strong interactions (bonds), in other words those which have a large effect on the Madelung constant, should be calculated first. The interactions were classified according to their magnitude (9): (1) the largest interaction between a higher valency cation and anions coordinated to it; (2) medium strength interaction between a lower valency cation and the coordinated anions; (3) smaller repulsion between anions.

It remained difficult to determine the parameters of the present compounds with the above subsidiary means since the number of the parameters is too large. Then, a program to obtain directly the parameters which give rise to the maximum Madelung constant without utilizing any extra hypothesis as above was written. In the program, calculation starts also from a set of initially guessed variable atom parameters. The Madelung constant was first calculated for three cases $x[A]-W, x[A]$, and $x[A]+W$ with regard to the atom parameter $x[A]$, where W is a specified small positive number by which the change of the Madelung constant around $x[A]$ can be obtained under the condition that the other parameters are held constant. First, W was taken to be 0.005 (for refinement calculation 0.0001). One of the three $x[A]$ parameter values
gives the maximum Madelung constant. The selected parameter needs to satisfy condition 2 (8). If not, this value is abandoned, and the parameter value which gives the second largest Madelung constant is taken from the remaining two. A satellite program provides a set of initial atom parameters which meet condition 2 . Therefore, at least onc of three such valucs satisfies the condition.

Similarly, the Madelung constant was calculated for $y[A]-W, y[A]$, and $y[A]+$ W using the obtained value of the $x[A]$ parameter (the other parameters held unchanged), which gives two parameter values of $x[A]$ and $y[A]$. This process was continued until the 14th value of the parameter, $z[\mathrm{Cl}(4)]$, was obtained. Then, this cycle was repeated for parameters $x[A]$, $y[A], \cdots, z[\mathrm{Cl}(4)]$. Computation was terminated when the Madelung constant did not increase throughout two cycles of computation. For the Madelung constants, the method of Bertaut (10, 11) was used. The correctness of the program to calculate the constants was checked by comparing the obtained constants for several crystal structures with those of Johnson and Templeton (12). Another check was made by calculating CsCl constants with six different descriptions (13). These were well in accord with the literature value.

Condition 2 states that the ion-ion separations should be equal or longer than the critical distances. We use as the critical distances values $0.1 \AA$ smaller than the sum of the crystal radii of Shannon (14).

Applicability of this method for determining the variable atom parameters of this crystal structure was examined first for \mathbf{K}_{2} PrCl_{5} for which the atom parameters had been determined by single crystal X-ray diffraction analysis (3). The coordination number of Cl^{-}around Pr^{3+} is 7 in this structure. Since a crystal radius of $\mathrm{Pr}^{3+}(\mathrm{CN}=7)$ was not listed in the table of Shannon, it was estimated to be $1.198 \AA$ from the Pr^{3+}

TABLE IV
Atom Parameters for $K_{2} \mathrm{PuCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$

		$\mathrm{K}_{2} \mathrm{PuCl}_{5}$	$\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$
8 K or $8 \mathrm{Rb}:(8 \mathrm{~d})$	x	0.6904	0.6888
	y	0.4820	0.4867
	z	0.5336	0.5279
$4 \mathrm{Pu}:(4 \mathrm{c})$	x	0.5102	0.5094
	z	0.0587	0.0658
$4 \mathrm{Cl}(1):(4 \mathrm{c})$	x	0.0128	0.0127
	z	0.0759	0.0817
$4 \mathrm{Cl}(2):(4 \mathrm{c})$	x	0.8146	0.8189
	z	0.3039	0.3046
$4 \mathrm{Cl}(3):(4 \mathrm{c})$	x	0.6838	0.6734
	z	0.8601	0.8636
$4 \mathrm{Cl}(4):(8 \mathrm{~d})$	x	0.5687	0.5673
	y	0.5364	0.5407
	z	0.1559	0.1495

($\mathrm{CN}=6$) crystal radius and the difference of $\mathrm{La}^{3+}(\mathrm{CN}=7)$ and $\mathrm{La}^{3+}(\mathrm{CN}=6)$ crystal radii in the table. The coordination number of Cl^{-}around K^{+}is 9 . However, the ninth chlorine atom is considerably more distant from K^{+}than the other eight atoms. We took $1.65 \AA$ for $\mathrm{K}^{+}(\mathrm{CN}=8)$ in this calculation. As Cl^{-}crystal radius, $1.67 \AA$ was taken.

Calculation of the initial set of the parameters for $\mathrm{K}_{2} \mathrm{PrCl}_{5}$ with lattice constants $a=$ 12.631, $b=8.756$, and $c=7.973 \AA$ (3) with the satellite program showed that no parameter set could produce $\mathrm{K}-\mathrm{Cl}, \mathrm{Pr}-\mathrm{Cl}$, and $\mathrm{Cl}-\mathrm{Cl}$ distances all larger than the critical distances. The condition was not satisfied until the crystal radius of Cl^{-}was diminished to $1.63 \AA$. Therefore, calculation of the atom parameters by maximization of the Madelung constant was carried out with this Cl^{-}value, which corresponds to the critical distances of $\mathrm{K}-\mathrm{Cl}=3.18, \mathrm{Pr}-\mathrm{Cl}=2.728$, and $\mathrm{Cl}-\mathrm{Cl}=$ $3.16 \AA$. Calculation of the Madelung constant was made first for h, k, and l 's each from -4 to +4 , and then with refined values of the parameters for h, k, and l 's each from -12 to +12 . The atom parameters obtained are: $x[\mathrm{~K}]=0.6731, y[\mathrm{~K}]=0.4914$,
$z[\mathrm{~K}]=0.5441, x[\operatorname{Pr}]=0.5086, z[\operatorname{Pr}]=$ $0.0773, x[\mathrm{Cl}(1)]=0.0022, z[\mathrm{Cl}(1)]=0.0806$, $x[\mathrm{Cl}(2)]=0.8014, z[\mathrm{Cl}(2)]=0.3261$, $x[\mathrm{Cl}(3)]=0.6815, z[\mathrm{Cl}(3)]=0.8722$, $x[\mathrm{Cl}(4)]=0.5729, y[\mathrm{Cl}(4)]=0.5388$, and $z[\mathrm{Cl}(4)]=0.1555$. The values are in reasonable agreement with those of Meyer and Hüttl (3) except for a relatively large difference in the values of $\mathrm{Cl}(2)$ and $\mathrm{Cl}(4)$. Regarding this, we consider that there might remain some problems in the estimation of anion-anion critical distances (crystal radius sum minus $0.1 \AA$) under the circumstances that the crystal radii of anions have not been defined clearly and no values have been presented as a function of coordination number (14). In other words, it is possible that to treat the anion-anion repulsions as interactions based on the semihard sphere model is inappropriate. Further studies on this issue are required for more refined calculations. Anyway, all the parameters above obtained are consistent with those of Meyer and Hüttl (3) within the errors of parameter values ~ 0.01.

Calculation of the atom parameters for $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ was performed for a Cl^{-}crystal radius of $1.60 \AA$ which was the largest radius that satisfied condition 2 for all pairs of $\mathrm{K}-\mathrm{Cl}, \mathrm{Pu}-\mathrm{Cl}$, and $\mathrm{Cl}-\mathrm{Cl}$ critical values, i.e., $3.15,2.71$, and $3.10 \AA$, respectively. As the $\mathrm{Pu}^{3+}(\mathrm{CN}=7)$ crystal radius, $1.21 \AA$, which was obtained in the same manner as in the case of $\operatorname{Pr}^{3+}(\mathrm{CN}=7)$, was used. The results are shown in Table IV. Calculation of these parameters involves Madelung constant computation for $-12 \leq h \leq 12$, $-12 \leq k \leq 12$, and $-12 \leq l \leq 12$. The Madelung constant, Madelung energy (per mol), and half the shortest atom distance obtained are $16.5732,-2033.52 \mathrm{kcal} / \mathrm{mol}$, and $1.35504 \AA$, respectively.

In the rightmost column of Table II are shown the calculated intensities using the above parameter values with LAZYPULVERIX, which are reasonably in agreement with the observed ones.

Fig. 1. Perspective view of $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$. Smallest spheres, Pu ; middle-sized spheres, K or Rb ; largest spheres, Cl .

Figure 1 illustrates a perspective view of this crystal obtained with the ORTEP2 program. The smallest, middle, and largest circles denote plutonium(III), alkali metal, and chlorine atoms, respectively. As shown by Meyer and Hüttl (3), the numbers of coordination of chlorine atoms around a Pu^{3+} atom and around an alkali metal are seen to be 7 and $8(+1)$, respectively. The chlorine atoms around the Pu^{3+} atom form a monocapped trigonal prism. This polyhedron links with another one via a common edge forming an infinite chain along the b axis, i.e., ${ }_{\infty}^{1}\left[\mathrm{PuCl}_{3 / 1}^{t} \mathrm{Cl}_{4 / 2}{ }^{e}\right]^{2-}$ where e and t stand for edge sharing and terminal chlorine atoms, respectively. Four $\mathrm{Cl}(4)$ atoms coordinated to one plutonium atom participate in the
edge sharing. Bond distances for $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ calculated by using the obtained atom parameters are tabulated in Table V.

Calculation of the atom parameters for $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ was carried out in the same manner as that for $\mathrm{K}_{2} \mathrm{PuCl}_{5}$. As the crystal radius of Rb^{+}, the eight coordination value, $1.75 \AA$ (14), was adopted for the same reason as in $\mathrm{K}_{2} \mathrm{PuCl}_{5}$. Because the satellite program calculation revealed that there can be no atom parameter set which satisfied condition 2 with the Cl^{-}crystal radius of $1.67 \AA$ Å (literature value), it was reduced to $1.60 \AA$, which is the maximum value in agreement with condition 2. The critical distances for $\mathrm{Rb}-\mathrm{Cl}, \mathrm{Pu}-\mathrm{Cl}$, and $\mathrm{Cl}-\mathrm{Cl}$ are then $3.25,2.71$, and $3.10 \AA$, respectively.

TABLE V
Bond Distances (\AA) For $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}{ }^{a}$

$\mathrm{K}_{2} \mathrm{PuCl}_{5}$			
$\mathrm{Pu}-\mathrm{Cl}(2)$	2.710	$\mathrm{~K}-\mathrm{Cl}(3)$	3.150
$\mathrm{Pu}-\mathrm{Cl}(3)$	2.710	$\mathrm{~K}-\mathrm{Cl}(2)$	3.151
$\mathrm{Pu}-\mathrm{Cl}(4)$	$2.720(4 \times)$	$\mathrm{K}-\mathrm{Cl}(1)$	3.151
$\mathrm{Pu}-\mathrm{Cl}(1)$	2.912	$\mathrm{~K}-\mathrm{Cl}(2)$	3.180
		$\mathrm{~K}-\mathrm{Cl}(4)$	3.209
		$\mathrm{~K}-\mathrm{Cl}(3)$	3.298
		$\mathrm{~K}-\mathrm{Cl}(4)$	3.415
		$\mathrm{~K}-\mathrm{Cl}(1)$	3.495
		$\mathrm{~K}-\mathrm{Cl}(4)$	4.115
$\mathrm{Rb}_{2} \mathrm{PuCl}$			
$\mathrm{Pu}-\mathrm{Cl}(2)$	2.710	$\mathrm{Rb}-\mathrm{Cl}(3)$	3.250
$\mathrm{Pu}-\mathrm{Cl}(3)$	2.710	$\mathrm{Rb}-\mathrm{Cl}(1)$	3.251
$\mathrm{Pu}-\mathrm{Cl}(4)$	$2.754(2 \times)$	$\mathrm{Rb}-\mathrm{Cl}(2)$	3.261
$\mathrm{Pu}-\mathrm{Cl}(4)$	$2.784(2 \times)$	$\mathrm{Rb}-\mathrm{Cl}(2)$	3.269
$\mathrm{Pu}-\mathrm{Cl}(1)$	2.883	$\mathrm{~Kb}-\mathrm{Cl}(4)$	3.354
		$\mathrm{Rb}-\mathrm{Cl}(3)$	3.468
		$\mathrm{Rb}-\mathrm{Cl}(4)$	3.513
		$\mathrm{Rb}-\mathrm{Cl}(1)$	3.558
		$\mathrm{Rb}-\mathrm{Cl}(4)$	4.274

${ }^{a}$ Final significant figures are given for comparative purposes; precision is ca. $\pm 0.01 \AA$.

The atom parameter values obtained are shown in Table IV. The values are seen to be slightly changed from those for $\mathrm{K}_{2} \mathrm{PuCl}_{5}$. The Madelung constant, Madelung energy (per mol), and half the shortest atom distance obtained are $16.4102,-2013.53 \mathrm{kcal} /$ mol , and $1.35503 \AA$, respectively. It is interesting that the Madelung constant of $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ is smaller than that of $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ by 0.163 for the same shortest atom distance which corresponds to one of the $\mathrm{Pu}-\mathrm{Cl}$ distances. The difference in the Madelung constant results in lower Madelung energy for $\mathrm{K}_{2} \mathrm{PuCl}_{5}$. The calculated intensities, I (calc), for $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ are shown in the rightmost column of Table III. These are seen to be in reasonable agreement with the observed intensities (column 4). The arrangement and coordination of atoms in $\mathrm{Rb}_{2} \mathrm{Pu}^{-}$ Cl_{5} is essentially the same as in $\mathrm{K}_{2} \mathrm{PuCl}_{5}$. Bond distances calculated by using the obtained atom parameters are listed in Table V.

Figure 2 shows the arrangement of chlorine atoms around Pu^{3+}. The bond distances given in the figure are those for $\mathrm{K}_{2} \mathrm{PuCl}_{5}$. One each of $\mathrm{Cl}(1), \mathrm{Cl}(2)$, and $\mathrm{Cl}(3)$ atoms together with four $\mathrm{Cl}(4)$ atoms surround the plutonium atom. The $\mathrm{Cl}(1)$ atom is right over the plutonium along the direction of the c axis.

As the chlorine positions change, the $\mathrm{Pu}-\mathrm{Cl}$ distances also change. The bond distances are the same or elongated for the case of the rubidium compound. The reverse is seen only for $\mathrm{Pu}-\mathrm{Cl}(1)$ where 2.912 \AA decreases to $2.883 \AA$. The $\mathrm{Pu}-\mathrm{Cl}(2)$ and $\mathrm{Pu}-\mathrm{Cl}(3)$ distances, $2.710 \AA$, do not change. Two $\mathrm{Pu}-\mathrm{Cl}(4)$ bonds with the lower (along c axis) $\mathrm{Cl}(4)$ atoms increase their distance from $2.720 \AA$ of $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ to $2.754 \AA$ of $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$. With the higher $\mathrm{Cl}(4)$ atoms the bond distance increases to a larger degree. In this case, 2.720 increases to $2.784 \AA$. Such general trends of increase in the $\mathrm{Pu}-\mathrm{Cl}$ and $\mathrm{A}-\mathrm{Cl}$ bond distances may be understood as associated with weaker bonds and higher lattice energy. The smaller Madelung constant for $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$, though the constant corresponds to a geometrical

Fig. 2. Arrangement of chlorine atoms around Pu^{3+} atom in $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$. Center atom, Pu^{3+}. Bond distances are for $\mathrm{K}_{2} \mathrm{PuCl}_{5}$.

Fig. 3. Raman spectra for $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$.
arrangement and not to the bonding distance, suggests a marginal stability for $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$.

According to Meyer (1), rare-earth complex chlorides, $A_{2} R E C_{5}$, crystallize in the $\mathrm{K}_{2} \mathrm{PrCl}_{5}$-type structure (space group Pnma) if A^{+}is either K^{+}or Rb^{+}and $R E^{3+}$ has CN $=9$ in binary chlorides provided that the polarization of $R E^{3+}$ is not too large. The present compounds, though not rare-earth complexes, accord with his classification since the chlorine atom coordination around Pu^{3+} is 9 in PuCl_{3} (15).

Figure 3 shows the Raman spectrum of $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ taken at room temperature. It is interesting that the figure shows two peaks at 131 and $312 \mathrm{~cm}^{-1}$ which are very close to 132 and $312 \mathrm{~cm}^{-1}$ for $\mathrm{Rb}_{2} \mathrm{PuCl}_{6}$ (9). In the case of $\mathrm{Rb}_{2} \mathrm{PuCl}_{6}$, the Raman lines could be interpreted in terms of PuCl_{6}^{2-} which are slightly distorted from O_{h} symmetry. The angles $\mathrm{Cl}-\mathrm{Pu}-\mathrm{Cl}$ in $\mathrm{Rb}_{2} \mathrm{PuCl}_{6}$ are 101.04, 86.27 , and 85.15° (if O_{h}, the angles should be 90° and the bond distances should all be the same). The 132 and $312 \mathrm{~cm}^{-1}$ lines could be assigned to threefold degenerate $\nu_{5}\left(F_{2 g}\right)$ and nondegenerate $\nu_{1}\left(A_{1 g}\right)$ normal modes of the O_{h} symmetry. The Raman spectra for $\alpha-\mathrm{Cs}_{2} \mathrm{UCl}_{6}, \mathrm{Cs}_{2} \mathrm{NpCl}_{6}$, and $\mathrm{Cs}_{2} \mathrm{PuCl}_{6}$ $(16,17)$, which are also of distorted O_{h}, have shown the ν_{5} and ν_{1} lines near those of $\mathrm{Rb}_{2} \mathrm{PuCl}_{6}$.

For $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$, the chlorine coordination around plutonium can be regarded as distorted O_{h} if $\mathrm{Cl}(1)$ is neglected. The bond angles are between 68.08 and 98.89°, and the bond distances $\mathrm{Pu}-\mathrm{Cl}$ between 2.710 and $2.784 \AA$. The coincidence of the Raman lines of $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ with those of $\mathrm{Rb}_{2} \mathrm{PuCl}_{6}$ could thus be explained by this fact. Broadness of the present peaks may be attributed to the distortion of the crystal. Berringer et al. (18) have pointed out the insensitivity of the Raman and infrared spectra of these kinds of compounds. $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ did not exhibit any Raman bands. The reason is unclear, but it is possible that the compound was decomposed under the laser light on exposure.

Combination of the present lattice parameters for $\mathrm{K}_{2} \mathrm{PuCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$ with the available lattice parameter data for $\mathrm{K}_{2} \mathrm{UCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{UCl}_{5}$ (5) as well as $\mathrm{K}_{2} \mathrm{AmCl}_{5}$ and $\mathrm{Rb}_{2} \mathrm{AmCl}_{5}$ (6) enables us to trace the change of molecular volume with increasing atomic number of the actinides. Curves 1 and 2 in Fig. 4 show the change of the molecular volume ratios $V\left(\mathrm{~K}_{2} A n \mathrm{Cl}_{5}\right)$ / $V\left(\mathrm{~K}_{2} \mathrm{UCl}_{5}\right)$ and $V\left(\mathrm{Rb}_{2} A n \mathrm{Cl}_{5}\right) / V\left(\mathrm{Rb}_{2} \mathrm{UCl}_{5}\right)$, respectively, where $A n$ denotes the actinides. Both curves are seen to decrease with the increase of the atomic number. Curve 3 represents the molecular volume change of AnCl_{3} expressed as $V\left(\mathrm{AnCl}_{3}\right)$ /

Fig. 4. Change of molecular volume ratio with the actinide elements from uranium to americium.
$V\left(\mathrm{UCl}_{3}\right)$. To obtain these values, the literature lattice parameters of $\mathrm{UCl}_{3}(5), \mathrm{NpCl}_{3}$ (19), $\mathrm{PuCl}_{3}(20)$, and $\mathrm{AmCl}_{3}(6,21)$ were used. It is seen from curve 3 that the volume decreases with increasing atomic number or decreasing crystal radius of the actinides. The slopes of the $\mathrm{K}_{2} \mathrm{AnCl}_{5}$ and/or $\mathrm{Rb}_{2} \mathrm{AnCl}_{5}$ curves are smaller than that of $A n \mathrm{Cl}_{3}$, which can be ascribed to the larger number of the other atoms to one actinide atom in the formula of the complex chlorides.

Acknowledgments

The authors are grateful to Dr. L. Stein who kindly took the Raman spectra of $\mathrm{Rb}_{2} \mathrm{PuCl}_{5}$. They also thank Dr. W. T. Carnall for helpful discussions during the course of this work. The work reported herein was performed under the auspices of the Office of Basic

Energy Sciences, Division of Chemical Sciences, U.S. Department of Energy, under Contract W-31-109-ENG-38.

References

1. G. Meyer, in "Progress in Solid State Chemistry" (G. M. Rosenblatt and W. L. Worrell, Eds.), Vol. 14, pp. 141-219, Pergamon, Oxford (1983).
2. G. Meyer, Z. Anorg. Allg. Chem. 469, 149 (1980).
3. G. Meyer and E. Hüttl, Z. Anorg. Allg. Chem. 497, 191 (1983).
4. I. G. Suglobova and D. É. Chirkst, Koord. Khim. 7, 97 (1981).
5. G. Meyer, H. Chr. Gaebell, and R. Hoppe, J. Less-Common Met. 93, 347 (1983).
6. T. Schleid, L. R. Morss, and G. Meyer, J. Less-Common Met. 127, 183 (1987).
7. L. R. Morss and T. Fujino, Inorg. Chim. Acta 94, 111 (1984).
8. T. Fujino and L. R. Morss, J. Solid State Chem. 67, 131 (1987).
9. L. R. Morss and T. Fuilno, J. Solid State Chem. 72, 338-352 (1988).
10. E. F. Bertaut, J. Phys. Radium 13, 499 (1952).
11. H. D. B. Jenkins and K. F. Pratt, Chem. Phys. Lett. 62, 416 (1979).
12. Q. C. Johnson and D. H. Templeton, J. Chem. Phys. 34, 2004 (1961).
13. W. van Gool and A. G. Piken, J. Mater. Sci. 4, 95 (1969).
14. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
15. W. G. Wyckoff, "Crystal Structures," Vol. 2, Chap. VB, Interscience, New York (1964).
16. J. Shamir and A. Silberstein, J. Inorg. Nucl. Chem. 37, 1173 (1975).
17. D. Brown, B. Whittaker, and P. F.. I idster, AERE-R 8035 (1975).
18. B. W. Berringer, J. B. Gruber, T. M. Loehr, and G. P. O'Leary, J. Chem. Phys. 55, 4608 (1971).
19. W. H. Zachariasen, Acta Crystallogr. 1, 265 (1948).
20. W. H. Zachariasen, J. Chem. Phys. 16, 254 (1948).
21. J. Fuger, J. Inorg. Nucl. Chem. 28, 3066 (1966)

[^0]: * The U.S. Government's right to retain a nonexclusive royalty-free license in and to the copyright covering this paper, for governmental purposes, is acknowledged.
 \dagger Present address: Division of Chemistry, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-11, Japan.

[^1]: ${ }^{a} Q=1 / d^{2}$ in \AA^{-2}.

